Oral Difelikefalin Improves Itch and Inflammatory Biomarkers in Atopic Dermatitis Subjects With Moderate-to-Severe Pruritus

Paola Facheris, MD
Laboratory of Inflammatory Skin Diseases
Icahn School of Medicine at Mount Sinai, New York, NY, USA
S026 - Late-breaking Research: Clinical Trials
Oral Difelikefalin Improves Itch and Inflammatory Biomarkers in Atopic Dermatitis Subjects With Moderate-to-Severe Pruritus

DISCLOSURES
I do not have any relevant relationships with industry.
This study was sponsored by Cara Therapeutics.

Writing and editorial support provided by Peloton Advantage, LLC, an OPEN Health company, and funded by Cara Therapeutics.
Kappa Opioid Receptors and Oral Difelikefalin

- Kappa opioid receptors (KORs) are located primarily in the nervous system but are also expressed in immune cells and in human skin\(^1\-^4\)
- Dynorphin A, an endogenous KOR ligand, was identified in the epidermis\(^2\)
- An imbalanced epidermal kappa-opioid system has been implicated in pruritus in patients with atopic dermatitis (AD)\(^2\)
- Reduction in itch intensity in patients with AD has been linked to a restored KOR system\(^2\)

- Difelikefalin (DFK) is a selective KOR agonist
- DFK was recently approved by the FDA for the treatment of moderate-to-severe pruritus in adults undergoing hemodialysis\(^5\) and is under investigation for the treatment of other chronic pruritic conditions, including pruritus associated with AD

DFK for Moderate-to-Severe Pruritus in AD

- In an MC903 AD mouse model, DFK reduced scratching independently of skin inflammation\(^1\)

- In the phase 2 clinical study, DFK demonstrated a significant reduction in pruritus in subjects with **mild-to-moderate AD (BSA <10%)**, measured as a ≥4-point improvement in I-NRS at week 12\(^1\)

BSA, body surface area; I-NRS, Itch Numeric Rating Scale.

A sub-study of 40 subjects evaluated the effect of DFK on AD- and pruritus-related gene profiles using baseline (LS, NL) and week 12 (LS) skin biopsies.

Methods:
- Gene expression was measured using RNA-seq and RT-PCR.
- Pathway analysis was performed using GSVA and Spearman correlations were used to correlate biomarkers and clinical scores.
- Data from all DFK treatment groups were pooled.

GSVA, gene set variation analysis; LS, lesional; NL, non-lesional; RT-PCR, reverse transcriptase polymerase chain reaction.
Baseline Demographics and Disease Characteristics of Study Subjects

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo (n=11)</th>
<th>DFK 0.25 mg (n=9)</th>
<th>DFK 0.5 mg (n=10)</th>
<th>DFK 1.0 mg (n=10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>7 (63.6)</td>
<td>7 (77.8)</td>
<td>5 (50.0)</td>
<td>4 (40.0)</td>
<td>0.37</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>• Black or AA</td>
<td>4 (36.4)</td>
<td>5 (55.6)</td>
<td>4 (40.0)</td>
<td>6 (60.0)</td>
<td>-</td>
</tr>
<tr>
<td>• White</td>
<td>5 (45.5)</td>
<td>3 (33.3)</td>
<td>6 (60.0)</td>
<td>4 (40.0)</td>
<td>-</td>
</tr>
<tr>
<td>• Other</td>
<td>2 (18.2)</td>
<td>1 (11.1)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>-</td>
</tr>
<tr>
<td>Mean age, years</td>
<td>47.7</td>
<td>44.6</td>
<td>44.6</td>
<td>35.9</td>
<td>0.33</td>
</tr>
<tr>
<td>Mean I-NRS score</td>
<td>8.0</td>
<td>8.2</td>
<td>8.6</td>
<td>9.1</td>
<td>0.21</td>
</tr>
<tr>
<td>Mean EASI score</td>
<td>6.7</td>
<td>7.3</td>
<td>4.8</td>
<td>6.9</td>
<td>0.76</td>
</tr>
<tr>
<td>Mean BSA (%)</td>
<td>8.1</td>
<td>7.7</td>
<td>8.1</td>
<td>9.3</td>
<td>0.97</td>
</tr>
<tr>
<td>Mean AD duration, years</td>
<td>21.8</td>
<td>18.2</td>
<td>26.5</td>
<td>11.6</td>
<td>0.31</td>
</tr>
</tbody>
</table>

- Study groups were balanced by I-NRS score

I-NRS scores range from 0 to 10 (0 = no itch, 10 = worst itching imaginable); EASI scores range from 0 to 72.
AA, African American; EASI, Eczema Area and Severity Index.
Oral DFK, but Not Placebo, Downregulated the Overall Expression of Pruritus-Related Genes at Week 12

GSVA analysis

Pruritus-related genes

![Graph showing change in Z-score (Week 12 vs Baseline)]

- **Placebo**
- **DFK**

- **Log2FCH (Week 12 vs Baseline)**

- **IL-31**
- **NGF**
- **OSM**

- **Substance P**
- **CGRP**

***P<0.001; **P<0.01; *P<0.05; +P<0.1.

Red symbols indicate significance vs placebo.
Black symbols indicate significance vs baseline.

FCH, fold change; IL, interleukin; CGRP, calcitonin gene-related peptide; NGF, nerve growth factor; OSM, oncostatin M.
Oral DFK Significantly Modulated the Th2 Pathway

GSVA analysis

Th2 pathway

Red symbols indicate significance vs placebo.
Black symbols indicate significance vs baseline.

CCL, C-C motif chemokine ligand; Th, T helper; TSLP, thymic stromal lymphopoietin; TSLPR, thymic stromal lymphopoietin receptor.

***P<0.001; **P<0.01; *P<0.05; +P<0.1.
Oral DFK, but Not Placebo, Significantly Modulated Th17/Th22 and Other Inflammation Markers

Th17/Th22

- **IL-19**
 - Placebo: -2.5 ± 0.5
 - DFK: 4.0 ± 1.0
- **IL-22**
 - Placebo: 0.0 ± 0.5
 - DFK: 3.0 ± 1.0

DEFB4

- Placebo: 2.5 ± 0.5
- DFK: 4.5 ± 1.0

S100A12

- Placebo: 0.0 ± 0.5
- DFK: 3.0 ± 1.0

Th9

- **IL-9**
 - Placebo: -2.0 ± 0.5
 - DFK: 2.0 ± 1.0

Negative Regulators

- **IL-34**
 - Placebo: 0.0 ± 0.5
 - DFK: 1.0 ± 1.0
- **IL-37**
 - Placebo: 0.0 ± 0.5
 - DFK: 1.0 ± 1.0

Red symbols indicate significance vs placebo. Black symbols indicate significance vs baseline.

DEFB4, defensin beta 4; S100A2, S100 calcium-binding protein A2.

***P<0.001; **P<0.01; *P<0.05; +P<0.1.
Oral DFK, but Not Placebo, Significantly Improved the Skin Barrier

GSVA analysis

Skin barrier genes

Red symbols indicate significance vs placebo. Black symbols indicate significance vs baseline.

CLDN, Claudin; FLG, filaggrin; GJB3, gap junction protein beta 3; K16, keratin 16; TJP3, tight junction protein 3.
Pruritus- and Inflammation-Related Markers Correlate With Changes in EASI

MMP12, matrix metalloproteinase 12; TRPA1, transient receptor potential cation channel A1.
Conclusions

• As expected from the preclinical data in the MC903 AD mouse model, DFK significantly modulated the expression of pruritus-related genes in subjects with AD

• In addition, oral DFK significantly modulated the expression of AD-related inflammatory genes and pathways (Th2, Th22/Th17, Th9) and epidermal barrier products

• Oral DFK is a promising therapy for AD-related pruritus and may provide additional anti-inflammatory benefit by impacting the itch-scratch cycle